metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

I. Wharf* and A.-M. Lebuis

Department of Chemistry, Otto Maass Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6

Correspondence e-mail: ivor.wharf@mcgill.ca

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å R factor = 0.050 wR factor = 0.123 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrakis(3,5-dichlorophenyl)tin(IV)

The title compound, $[Sn(C_6H_3Cl_2)_4]$, crystallizes in the monoclinic space group C2/c, with the molecules having no symmetry. In contrast, its isostere $[3,5-(CH_3)_2C_6H_3]_4Sn$, (II), crystallizes in the tetragonal space group $P\overline{4}21c$.

Received 29 July 2003 Accepted 18 August 2003 Online 23 August 2003

Comment

The crystal structures of most of the tetraaryltin(IV) compounds reported to date (Lloyd & Brock, 1997; Schürmann et al., 1999; Wharf & Bélanger-Gariépy, 2003) are in close-packed tetragonal space groups, viz. $P\overline{4}21c$, $I\overline{4}$ and $P\overline{42}/n$. In these structures, the Ar₄Sn molecules are located on sites of $\overline{4}$ symmetry, the molecular conformation with the lowest energy, as determined previously for Ar₄Si analogues (Hutchings *et al.*, 1975). This is also the case for $(C_6F_5)_4$ Sn (Karipides et al., 1974) and (m-CH₃C₆H₄)₄Sn (Karipides & Oertel, 1977), both of which crystallize in $I4_1/a$. Deviations from tetragonal symmetry appear to require larger, more obtrusive, ring substituents, examples being $[p-CH_3S(O_2)C_6 H_4]_4$ Sn (Wharf *et al.*, 1990) and (*p*-CH₃CH₂C₆H₄)₄Sn (Wharf & Lebuis, 2000), which both crystallize in C2/c with molecules having 2 symmetry, and others having no molecular symmetry, such as $(p-CH_3CH_2OC_6H_4)_4$ Sn in $P2_1/c$ (Wharf & Simard, 1991), and both $(m-CH_3OC_6H_4)_4Sn$ in C2/c and $(o-CH_3OC_6 H_4$)₄Sn in $P\overline{1}$ (Wharf & Simard, 1995).

Desiraju & Jagarlapudi (1986) have proposed that since the Cl atom and the methyl group have almost the same volume, they act as isosteres, with chlorine/methyl analogues being effectively isomorphous. One such example is the toluene and chlorobenzene solvates of 2,3,7,8-tetraphenyl-1,9,10-anthyridine (Madhavi *et al.*, 1997). However, Ng (1997) found that (p-ClC₆H₄)₄Sn crystallizes in $P\overline{1}$, with no molecular symmetry, and is clearly not isomorphous with (p-CH₃C₆H₄)₄Sn in $I\overline{4}$ (Karipides & Wolfe, 1975). We present here the crystal structure of the title compound, (I), which has been investigated for comparison with its methyl analogue [3,5-(CH₃)₂C₆H₃]₄Sn, (II) (Wharf & Bélanger-Gariépy, 2003).

Compound (I) crystallizes in space group C2/c with the molecules having no symmetry and in this way resembles $(m-CH_3OC_6H_4)_4$ Sn. However, here the Sn-C distances are identical [2.134 (6)–2.135 (6) Å], and the distortion from tetrahedral geometry at the Sn atom is small [105.9 (2)–

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved 113.8 (2)°; Fig. 1 and Table 1]. Intermolecular contacts are all greater than the van der Waals distances, the shortest Cl···Cl distance being 3.60 Å and the shortest $H \cdots Cl$ distance being 3.03 Å.

Violations of the chloro-methyl exchange rule are observed when intermolecular directional forces or weak 'bonds' are present (Desiraju & Jagarlapudi, 1986). Schürmann et al. (1999) have proposed weak C-H···Cl interactions - still greater than the van der Waals distances - as a possible rationale for the different packing of $(p-ClC_6H_4)_4$ Sn and $(p-CH_3C_6H_4)_4$ Sn. For (I), the packing diagram (Fig. 2) does not show any clear set of such directed interactions, meaning a more detailed comparison of the structures of (I) and (II) is required for the basis of the crystal structure differences to be determined.

Figure 1

ORTEP (SHELXTL; Sheldrick, 1997) drawing of (I). Displacement ellipsoids correspond to 30% probability.

Figure 2

Packing diagram for (I), viewed along the b axis. H atoms have been omitted for clarity.

Experimental

The title compound was prepared as described by Wharf & Simard (1997). Suitable crystals for X-ray analysis were obtained by recrystallization from acetone.

Crystal data

$Sn(C_6H_3Cl_2)_4$	$D_x = 1.766 \text{ Mg m}^{-3}$
$M_r = 702.63$	Mo $K\alpha$ radiation
Monoclinic, C_2/c	Cell parameters from 25
a = 24.861 (8) Å	reflections
b = 11.908 (3) Å	$\theta = 12.5 - 15.5^{\circ}$
c = 18.139 (4) Å	$\mu = 1.79 \text{ mm}^{-1}$
$\beta = 100.16 \ (2)^{\circ}$	T = 293 (2) K
$V = 5286 (2) \text{ Å}^3$	Irregular shape, colourless
Z = 8	$0.55 \times 0.47 \times 0.45 \text{ mm}$
Z = 8	$0.55 \times 0.47 \times 0.45 \text{ mm}$

Data collection

Rigaku AFC-6S diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (ABSN in NRCVAX; Gabe et al., 1989) $T_{\rm min}=0.354,\ T_{\rm max}=0.449$ 19 754 measured reflections 5195 independent reflections 3632 reflections with $I > 2\sigma(I)$

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0767P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.94 \text{ e} \text{ Å}^{-3}$
Extinction correction: SHELXL96
Extinction coefficient: 0.00069 (9)

 $R_{\rm int} = 0.099$

 $\theta_{\rm max} = 26.0^{\circ}$ $h = -31 \rightarrow 31$

 $k = -15 \rightarrow 15$

 $l = -22 \rightarrow 22$

3 standard reflections

every 250 reflections

intensity decay: 2.3%

Table 1

Selected geometric parameters (Å, °).

6 1	(<i>'</i>	,	
Sn1-C31	2.134 (6)	Sn1-C41	2.135 (6)
Sn1-C11	2.135 (5)	Sn1-C21	2.135 (6)
C31-Sn1-C11	111.0 (2)	C26-C21-C22	118.2 (6)
C31-Sn1-C41	105.9 (2)	C26-C21-Sn1	118.2 (4)
C11-Sn1-C41	108.7 (2)	C22-C21-Sn1	123.6 (5)
C31-Sn1-C21	109.6 (2)	C36-C31-C32	118.8 (6)
C11-Sn1-C21	113.8 (2)	C36-C31-Sn1	120.1 (5)
C41-Sn1-C21	107.5 (2)	C32-C31-Sn1	121.1 (4)
C16-C11-C12	118.4 (5)	C46-C41-C42	119.3 (5)
C16-C11-Sn1	121.2 (4)	C46-C41-Sn1	121.2 (4)
C12-C11-Sn1	120.0 (4)	C42-C41-Sn1	119.5 (4)
C31-Sn1-C11-C16	164.0 (5)	C11-Sn1-C31-C36	135.8 (5)
C41-Sn1-C11-C16	-79.9(5)	C41-Sn1-C31-C36	18.0 (5)
C21-Sn1-C11-C16	39.8 (6)	C21-Sn1-C31-C36	-97.6(5)
C31-Sn1-C11-C12	-22.7(6)	C11-Sn1-C31-C32	-45.4(5)
C41-Sn1-C11-C12	93.4 (5)	C41-Sn1-C31-C32	-163.2(5)
C21-Sn1-C11-C12	-146.9(5)	C21-Sn1-C31-C32	81.1 (5)
Sn1-C11-C12-C13	-174.2(5)	Sn1-C31-C32-C33	-178.1(4)
Sn1-C11-C16-C15	172.2 (5)	Sn1-C31-C36-C35	175.9 (4)
C31-Sn1-C21-C26	30.8 (5)	C31-Sn1-C41-C46	-103.2(5)
C11-Sn1-C21-C26	155.8 (4)	C11-Sn1-C41-C46	137.4 (4)
C41-Sn1-C21-C26	-83.8(5)	C21-Sn1-C41-C46	13.8 (5)
C31-Sn1-C21-C22	-150.0(6)	C31-Sn1-C41-C42	75.7 (5)
C11-Sn1-C21-C22	-25.0(6)	C11-Sn1-C41-C42	-43.7(5)
C41-Sn1-C21-C22	95.3 (6)	C21-Sn1-C41-C42	-167.3(4)
Sn1-C21-C22-C23	-177.1(6)	Sn1-C41-C46-C45	178.7 (4)
Sn1-C21-C26-C25	176.9 (4)		

H atoms were constrained to the parent site using a riding model, with C–H distances of 0.93 Å and $U_{\rm iso}({\rm H})$ values of $1.2U_{\rm eq}({\rm parent atom})$.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1985); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *DARTD2* in *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*96 (Sheldrick, 1996); molecular graphics: *ORTEPII* (Johnson, 1976) in *NRCVAX*; software used to prepare material for publication: *NRCVAX* and *SHELXL*96.

The financial support from the Fonds FCAR du Ministère de l'Education du Québec is gratefully acknowledged.

References

- Desiraju, G. R. & Jagarlapudi, A. R. P. (1986). Proc. Ind. Acad. Sci. Chem. Sci. 96, 599–605.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.

- Hutchings, M. G., Andose, J. D. & Mislow, K. (1975). J. Am. Chem. Soc. 97, 4553-4561.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA.
- Karipides, A., Forman, C., Thomas, R. H. P. & Reed, A. T. (1974). Inorg. Chem. pp. 811–815.
- Karipides, A. & Oertel, M. (1977). Acta Cryst. B33, 683-687.
- Karipides, A. & Wolfe, M. (1975). Acta Cryst. B31, 605-608.
- Lloyd, M. A. & Brock, C. P. (1997). Acta Cryst. B53, 780-786.
- Madhavi, N. N. L., Katz, A. K., Carrell, H. L., Nangia, A. & Desiraju, G. R. (1997). Chem. Commun. pp. 1953–1954.
- Molecular Structure Corporation (1985). MSC/AFC DIffractometer Control Software. Version 4.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Ng, S. W. (1997). Acta Cryst. C53, 273-274.
- Schürmann, M., Silvestri, A., Ruisi, G., Girasolo, M. A., Paulsen, A. B., Huber, F. & Barbieri, R. (1999). J. Organomet. Chem. 584, 293–300.
- Sheldrick, G. M. (1996). SHELXL96. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
- Wharf, I. & Bélanger-Gariépy, F. (2003). Acta Cryst. E59, m661-m663.
- Wharf, T. & Lebuis, A.-M. (2000). Main Group Metal Chem. 23, 497-503.
- Wharf, I. & Simard, M. G. (1991). Acta Cryst. C47, 1314-1315.
- Wharf, I. & Simard, M. G. (1995). Acta Cryst. B51, 973-980.
- Wharf, I. & Simard, M. G. (1997). J. Organomet. Chem. 532, 1-9.
- Wharf, I. Simard, M. G. & Lamparski, H. (1990). Can. J. Chem. 68, 1277-1282.